Team Name: sdmay24-31

Team Members: Anuraag Pujari, Daniel Rosenhamer, Ella Rekow, Ryan Sand, Sachin Patel, Zachary Schmalz

Report Period: Sept 18 - Oct 09

Summary of Progress

1. Lidar Research (cont from last period)

- a. Explored the difference between Lidars
 - i. Solid State and Mechanical Lidar.
 - ii. 360-degree Lidar with 40-degree Lidar, considering longer-range capabilities.
- b. Conducted hands-on testing using the Livox mid-40 Lidar, Livox software, live Lidar readings, and previously recorded Lidar data.
 - i. Adjusted various settings:
 - 1. frame time
 - 2. color settings
 - 3. point size
 - 4. playback speed
 - 5. orientation.
- c. Tested the Pylas library with the recording of Lidar data.
- d. Lidar specifications
 - i. Created a Lidar specification sheet for comparing multiple Lidar models.
 - ii. Identified the most important Lidar specifications, including range, points per second (PPS), field of view (FOV), and frame rate (for 360-degree rotations).
 - iii. Explored Lidar data and familiarized ourselves with the software.
 - iv. Researched the use of Lidar as a vehicle detection system for moving vehicles.

2. Developed Requirements of Project

- a. Met with Ahmed Nazar to help develop these requirements
- b. Identified problem statement
 - i. Issues contributing to our statement:
 - 1. Lack of standardization in developing lidar sensors.
 - 2. Difficulty in creating an object classification training model due to data discrepancies.
 - 3. Poor cross-compatibility in lidar data.
 - ii. Problem statement: The challenge lies in establishing industry-standard protocols for lidar sensor development, leading to difficulties in building a reliable object classification training model due to data inconsistencies,

ultimately hindering cross-compatibility. Additionally, there is a need to create an open-source dataset for ISU to use as a reliable data source.

- c. Identified Requirements and Constraints
 - i. No specific budget constraints as equipment is available.
 - ii. Data privacy considerations in gathering data.
 - iii. Adherence to engineering standards and agile development practices.
 - iv. Multiple sensors and time constraints are to be managed.
 - v. Need a diverse dataset.

3. Developed Project Plan

- a. Tasks and timelines
 - i. for the rest of the semester:
 - 1. Week 1&2 Lidar Options
 - 2. Week 3 : ML overview
 - 3. Week 4&5 : Messing with ML
 - 4. Week 6-8: Data collection and data labeling
 - 5. Week 9&10: System Design
 - ii. Identified Project timeline
 - 1. Collect data 60h
 - 2. Develop Model 100h
 - 3. Label Data set 70h
 - 4. Train model 70h
 - 5. Check model 90h

4. Machine Learning Research

- a. Machine learning basics
 - i. Machine learning crash course from Ahmed.
 - ii. Recognized the importance of parameters, weights, neurons, etc
 - iii. Built an understanding of different best-fit applications for Machine Learning:
 - 1. Linear Regression
 - 2. Logarithmic
 - 3. Re-Lu
 - 4. Leaky Re-Lu
 - iv. Different Types of Neural Networks
 - 1. Deep reinforcement learning
 - 2. convolutional
 - 3. Generative adversarial network

5. Explored Tools to be utilized

- a. MATLAB livox toolbox
 - i. Use manual labels first to determine the test accuracy
 - ii. Used due to OpenCV not working for computer vision
- b. OpenPyLivox
 - i. Used for extracting data

ii. Better for communication between sensor and device